

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Note

Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside, dimethylthexylsilyl 3,4,6-tri-O-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside, and dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside: synthesis of authentic samples *

David Crich a,b,*, Ming Li a, Prasanna Jayalath b

ARTICLE INFO

Article history: Received 25 August 2008 Received in revised form 3 October 2008 Accepted 7 October 2008 Available online 14 October 2008

Keywords: Glycosylation Uloside Mannoside

ABSTRACT

Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside was prepared by reduction of the corresponding 4,6-O-(4-methoxybenzylidene) acetal with sodium cyanoborohydride and trifluoroacetic acid. This alcohol was coupled to 2-O-benzoyl-3,4,6-tri-O-benzyl- α -D-glucopyranosyl trichloroacetimidate to give a β -glucoside that was converted to dimethylthexylsilyl 3,4,6-tri-O-benzyl- β -D-mannopyranosyl-(1- Δ 4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside by saponification, Dess-Martin oxidation, and sodium borohydride reduction. Sulfonylation then gave dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl- β -D-mannopyranosyl-(1- Δ 4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside.

© 2008 Elsevier Ltd. All rights reserved.

The NMR spectral data for dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (4) and dimethylthexylsilyl 3,4,6-tri-O-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (11), as described by Schmidt and co-workers, are incorrect.^{2,3} We describe unambiguous syntheses of authentic samples of both compounds and of the 2-benzylsulfonyl derivative (12) of 11, and provide full characterization data for all three compounds.

Synthesis of the glycosyl acceptor **4** began with the known dimethylthexylsilyl glycoside **1**⁴ from which the esters were removed with catalytic sodium methoxide to give a triol that was immediately converted to the 4-methoxybenzylidene acetal **2** (Scheme 1). The 3-O-allyl ether **6** was then obtained by treatment with sodium hydride and allyl bromide. Reductive cleavage of the

4-methoxybenzylidene acetal with sodium cyanoborohydride and trifluoroacetic acid⁵ finally gave the acceptor **4** in 70% yield together with 6% of the 4-0-(4-methoxybenzyl) ether **5** (Scheme 1). The regioselectivity of the reductive ring opening reaction is supported by the chemical shift (δ 70.7) of C-6 in the 6-0-(4-methoxybenzyl) isomer **4**, which is consistent to that of C-6 in a closely related compound, allyl 3-0-benzyl-2-deoxy-2-acetamido- β -D-glucopyranoside, which was accessed by a different route. Additional confirmation was obtained by acetylation of both **4** and **5**, giving **6** and **7**, respectively, when the anticipated chemical shift changes were observed in the NMR spectra.

Adapting the classical Lindberg approach to β-mannosides, $^{7.8}$ 2- 0 -benzoyl-3,4,6-tri- 0 -benzyl- 0 -p-glucopyranosyl trichloroacetimidate (8)⁹ was activated with trimethylsilyl triflate 10 in the presence of 4 , leading to the isolation of the β-glucoside 9 in 51% yield (Scheme 2). Saponification gave the alcohol 10 , Dess-Martin oxidation 11 of which then provided a uloside that was immediately reduced with sodium borohydride to give the 0 -mannoside 11 in 84% yield along with 4 -5% of the gluco-isomer 10 . Finally, sulfonylation of 11 with benzylsulfonyl chloride in pyridine gave 12 in 97% yield (Scheme 2).

^a Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA

^b Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7061, USA

^{*} Supplementary data is available for this Note.

^{*} Corresponding author. Tel.: +1 313 577 1915; fax: +1 313 577 8822. E-mail address: dcrich@chem.wayne.edu (D. Crich).

$$\begin{array}{c} \text{OAc} \\ \text{ACO} \\ \text{NHAc} \\ \end{array} \begin{array}{c} \text{i) NaOMe (cat),} \\ \text{ii) MeOC}_6 \text{H}_4 \text{CH}(\text{OMe})_2, \text{ PPTS} \\ \end{array} \begin{array}{c} \text{PMP} \\ \text{O} \\ \text{NHAc} \\ \end{array} \begin{array}{c} \text{NaH, CH}_2 = \text{CHCH}_2 \text{Br} \\ \text{NHAc} \\ \end{array} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NaBH}_3 \text{CN, TFA, DMF} \\ \text{AllO} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{AllO} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NaBH}_3 \text{CN, TFA, DMF} \\ \text{AllO} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{AC}_2 \text{O, pyridine} \\ \end{array} \begin{array}{c} \text{AC}_2 \text{O, pyridine} \\ \text{AC}_2 \text{O, pyridine} \\ \end{array} \begin{array}{c} \text{AC}_2 \text{O, pyridine} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NHAC} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NHAC} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NHAC} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{OPMB} \\ \text{BnO} \\ \text{OOTDS} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NSOTT, CH}_2 \text{Cl}_2 \\ \text{S1\%} \\ \end{array} \begin{array}{c} \text{BnO} \\ \text{OPMB} \\ \text{NHAC} \\ \end{array} \begin{array}{c} \text{NEADOME, TTW}_3 \text{NOME, TTW}_4 \\ \text{NOME, TTW}_5 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NOME, TTW}_5 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NSOME, TTW}_5 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NSOME, TTW}_5 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NSOME, TTW}_5 \\ \text{NSOME, TTW}_6 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NSOME, CH}_2 \text{Cl}_3 \\ \end{array} \begin{array}{c} \text{NSOME, CH}_2 \text{Cl}_3 \\ \text{NSOME, CH}_3 \\ \text{NSOME, CH}_4 \\ \text{NSOME, CH}_3 \\ \text{NSOME, CH}_4 \\ \text{NSOME, CH}_3 \\ \text{NSOME, CH}_4 \\ \text{NSOME, CH}_4$$

Scheme 2. Unambiguous synthesis of the β -mannosides 11 and 12.

1. Experimental

1.1. General methods

Optical rotations were determined with an Autopol III polarimeter for solutions in CHCl₃. NMR spectra were recorded for CDCl₃ solutions with a Varian 400 or 500 MHz spectrometer. Chemical shifts are in ppm downfield from tetramethylsilane. High resolution mass spectra were recorded with a Waters Micromass-LCT-Premier-XE instrument.

1.2. Dimethylthexylsilyl 2-acetamido-4,6-di-O-(4-methoxybenzylidene)-2-deoxy-β-D-glucopyranoside (2)

To a solution of $\mathbf{1}^4$ (3.38 g, 6.89 mmol) in MeOH-CH₂Cl₂ (1:1 v:v, 30 mL) was added a solution of NaOMe in MeOH (25 wt %, 0.2 mL, 0.88 mmol). The resulting mixture was stirred for 2.5 h at ambient temp under N₂ atmosphere. Monitoring by TLC (MeOH-CH₂Cl₂ 1:4) indicated that the reaction went to completion. The reaction mixture was neutralized with Amberlist-15 resin (H⁺), filtered, and the filtrate was concentrated to furnish a white foam, which was dissolved in DMF (20 mL). PPTS (184 mg, 0.73 mmol) and p-methoxybenzaldehyde dimethyl acetal (1.40 mL, 8.26 mmol) were added. The mixture was evaporated on a rotary evaporator at 50 °C to remove the methanol produced during the reaction. After 2 h, TLC (EtOAc-hexane 1:3) showed that the reactant was completely consumed. The mixture was poured into 1 N aq NaHCO₃ and extracted with CH₂Cl₂. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated. The residue was subjected to silica gel column chromatography (EtOAc-CH₂Cl₂ $3:2\rightarrow 2:1$) to give **2** (2.22 g, 4.62 mmol, 67%). $[\alpha]_D^{22}$ -49.7 (c 1.1); ¹H NMR (400 MHz) δ 7.40 (d, 2H, J = 8.8 Hz, Ar-H), 6.86 (d, 2H, J = 8.0 Hz, Ar-H), 5.83 (d, 1H, J = 6.7 Hz, CH₃CONH), 5.47 (s, 1H, PhCHO₂), 4.87 (d, 1H, J = 8.0 Hz, H-1), 4.23 (dd, 1H, J = 3.2, 10.0 Hz, H-6_a), 4.18 (br s, 1H, OH), 4.02 (t, 1H, J = 9.9 Hz, H-3), 3.77 (s, 3H, OCH₃), 3.73 (t, 1H, J = 10.2 Hz, H-6_b), 3.52 (t, 1H, J = 9.2 Hz, H-4), 3.48–3.40 (m, 2H, H-5, H-2), 1.99 (s, 3H, CH₃CONH), 1.65–1.58 (m, 1H, SiC(CH₃)₂CH(CH₃)₂), 0.88–0.84 (m, 12H, SiC(CH₃)₂CH(CH₃)₂), 0.15 (s, 3H, SiCH₃), 0.14 (s, 3H, SiCH₃); ¹³C NMR (100 MHz) δ 171.8, 160.4, 129.9, 127.9, 113.8, 102.0, 96.2, 81.9, 71.4, 68.8, 66.6, 61.0, 55.5, 34.2, 25.0, 23.8, 20.3, 20.2, 18.8, 18.7, -1.5, -3.2. ESIMS m/z calcd for C₂₄H₃₉NO₇SiNa [M+Na⁺]: 504.2394. Found: 504.2407.

1.3. Dimethylthexylsilyl 2-acetamido-3-*O*-allyl-4,6-di-*O*-(4-methoxybenzylidene)-2-deoxy-β-p-glucopyranoside (3)

To a solution of alcohol **2** (2.15 g, 4.46 mmol) in anhydr DMF (15 mL) was added 60% NaH in mineral oil (284 mg, 7.10 mmol) at 0 °C under N₂ atmosphere. After stirring for 10 min, allyl bromide (0.50 mL, 5.91 mmol) was added. The resulting mixture was stirred for 30 min at 0 °C, then was allowed to warm to ambient temperature, and stirred for another 1.5 h. The mixture was poured into satd aq NH₄Cl and extracted with CH₂Cl₂. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated. The residue was subjected to silica gel column chromatography to furnish **3** (1.59 g, 3.04 mmol, 68%). $[\alpha]_2^{D^2} - 14.6$ (c 1.0); ¹H NMR (400 MHz) δ 7.38 (d, 2H, J = 8.0 Hz, Ar-H), 6.87 (d, 2H, J = 8.0 Hz, Ar-H), 5.93 (br s, 1H, CH₃CON*H*), 5.89–5.81 (m, 1H, CH₂CH=CH₂), 5.46 (s, 1H, ArCHO₂), 5.23–5.16 (m, 2H, H-1, CH₂CH=CH₂), 5.10 (d, 1H, J = 10.4 Hz, CH₂CH=CH₂), 4.31 (dd, 1H, J = 5.6, 13.2 Hz, CH₂CH=CH₂), 4.24 (dd, 1H, J = 4.8, 10.8 Hz, H-6_a), 4.14–4.07 (m,

2H, CH_2 CH=CH₂, H-3), 3.78 (s, 3H, OCH₃), 3.72 (t, 1H, J = 10.6 Hz, H-6_b), 3.58 (t, 1H, J = 9.0 Hz, H-4), 3.50–3.44 (m, 1H, H-5), 3.24–3.21 (m, 1H, H-2), 1.95 (s, 3H, CH₃CONH), 1.62–1.57 (m, 1H, SiC(CH₃)₂CH(CH₃)₂), 0.86 (s, 3H, SiC(CH₃)₂CH(CH₃)₂), 0.85 (s, 3H, SiC(CH₃)₂CH(CH₃)₂), 0.13 (s, 3H, SiC(H₃)₂CH(CH₃)₂), 0.13 (s, 3H, SiCH₃), 0.12 (s, 3H, SiCH₃); ¹³C NMR (100 MHz) δ 170.4, 160.2, 135.3, 130.2, 127.6, 117.1, 113.8, 101.3, 95.5, 82.7, 76.8, 73.5, 69.0, 66.2, 60.2, 55.5, 34.2, 25.0, 23.8, 20.2, 18.8, –1.6, –3.2. ESIMS m/z calcd for $C_{27}H_{43}NO_7SiNa$ [M+Na⁺]: 544.2693. Found: 544.2693.

1.4. Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (4) and dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-4-O-(4-methoxybenzyl)- β -D-glucopyranoside (5)

To a solution of **3** (1.59 g, 3.04 mmol), in anhyd DMF (22 mL) in the presence of 4 Å MS was added NaBH₃CN (1.91 g, 30.4 mmol) followed by a solution of TFA (4.70 mL, 61 mmol) in anhydr DMF (24 mL) at 0 °C over 25 min. After 1 h at 0 °C, the reaction mixture was warmed to room temperature and stirred for another 4 h. At this point, the reaction mixture was poured into H₂O (500 mL) and solid NaHCO₃ was slowly added to neutralize the mixture to pH 7.0. The water phase was extracted with CH₂Cl₂ (3 × 100 mL). The collected organic phase was washed with brine, dried over Na₂SO₄, and concentrated. The resulting residue was purified by flash chromatography on silica gel to afford **4** (1.11 g, 2.12 mmol, 70%) and **5** (90.5 mg, 0.17 mmol, 6%).

For **4** $[\alpha]_D^{21}$ –20.5 (*c* 0.8); ¹H NMR (400 MHz) δ 7.23 (d, 2H, J = 8.0 Hz, Ar-H), 6.85 (d, 1H, J = 8.8 Hz, Ar-H), 5.92–5.83 (m, 1H, $CH_2CH=CH_2$), 5.72 (d, 1H, J=7.2 Hz, CH_3CONH), 5.24 (d, 1H, J = 17.2 Hz, $CH_2CH = CH_2$), 5.13 (d, 1H, J = 9.6 Hz, $CH_2CH = CH_2$), 5.02 (d, 1H, J = 7.2 Hz, H-1), 4.53-4.46 (m, 2H, ArCH₂O), 4.24 (dd, 1H, J = 5.6, 13.2 Hz, $CH_2CH = CH_2$), 4.15 (dd, 1H, J = 6.0, 13.2 Hz, $CH_2CH=CH_2$), 3.85 (t, 1H, J = 10.0 Hz, H-3), 3.79 (s, 3H, OCH_3), 3.69 (d, 2H, J = 4.8 Hz, H-6_a, H-6_b), 3.56 (t, 1H, J = 8.8 Hz, H-4), 3.51-3.46 (m, 1H, H-5), 3.25-3.20 (m, 1H, H-2), 3.08 (br s, 1H, OH), 1.94 (s, 3H, CH_3CONH), 1.63–1.56 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.86 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$), 0.84 (s, 3H $SiC(CH_3)_2CH(CH_3)_2$), 0.82 (s, 6H, SiC(CH₃)₂CH(CH₃)₂), 0.14 (s, 3H, SiCH₃), 0.11 (s, 3H, SiCH₃); ¹³C NMR (100 MHz) δ 170.4, 159.5, 135.4, 130.2, 129.5, 117.2, 114.0, 95.2, 80.6, 74.0, 73.5, 73.2, 59.2, 55.5, 34.1, 25.0, 23.8, 20.1, 18.7, -1.6, -3.3. ESIMS m/z calcd for $C_{27}H_{45}NO_7SiNa$ [M+Na⁺]: 546.2851. Found: 546.2863.

For **5** $[\alpha]_D^{21}$ +5.2 (*c* 0.6); ¹H NMR (500 MHz) δ 7.23 (d, 2H, J = 8.5 Hz, Ar-H), 6.85 (d, 1H, J = 8.0 Hz, Ar-H), 5.92–5.86 (m, 1H, $CH_2CH=CH_2$), 5.84 (d, 1H, J = 8.5 Hz, CH_3CONH), 5.24 (d, 1H, J = 17.0 Hz, $CH_2CH = CH_2$), 5.14 (d, 1H, J = 10.5 Hz, $CH_2CH = CH_2$), 5.02 (d, 1H, J = 7.5 Hz, H-1), 4.73 (d, 1H, J = 10.5 Hz, ArCH₂O), 4.54 (d, 1H, J = 11.0 Hz, ArCH₂O), 4.28 (dd, 1H, J = 5.0, 12.5 Hz, $CH_2CH=CH_2$), 4.14 (dd, 1H, J = 6.0, 13.0 Hz, $CH_2CH=CH_2$), 3.93 (t, 1H, J = 10.0 Hz, H-3), 3.78 (s, 4H, OCH₃, H-6_a), 3.64–3.62 (m, 1H, $H-6_b$), 3.45 (t, 1H, J = 9.5 Hz, H-4), 3.42–3.38 (m, 1H, H-5), 3.30– 3.25 (m, 1H, H-2), 1.98 (s, 3H, CH₃CONH), 1.63-1.56 (m, 1H, SiC(CH₃)₂CH(CH₃)₂), 0.86 (s, 3H, SiC(CH₃)₂CH(CH₃)₂), 0.84 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$), 0.82 (s, 6H, $SiC(CH_3)_2CH(CH_3)_2$), 0.14 (s, 3H, SiC H_3), 0.10 (s, 3H, SiC H_3); ¹³C NMR (125 MHz) δ 170.4, 159.6, 135.3, 130.4, 129.9, 117.0, 114.1, 95.2, 80.8, 78.3, 75.2, 74.6, 73.7, 62.5, 59.6, 55.5, 34.2, 25.0, 23.8, 20.2, 18.7, -1.5, -3.2. ESIMS m/zcalcd for $C_{27}H_{45}NO_7SiNa [M + Na^+]$: 546.2863. Found: 546.2863.

1.5. Dimethylthexylsilyl 2-acetamido-4-O-acetyl-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-β-p-glucopyranoside (6)

To a solution of **4** (65.0 mg, 124 μ mol) in anhydrous pyridine (1 mL) was added Ac₂O (80.0 μ L, 846 μ mol). The resulting mixture was stirred for 4 h at room temperature under N₂ atmosphere. The

reaction mixture was quenched with MeOH and the volatiles were removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with 0.1 N HCl, satd aq NaHCO₃, and brine. The organic phase was dried over Na₂SO₄ and concentrated. The residue was subjected to silica gel column chromatography (EtOAc-hexane 2:3) to afford acetate **6** (63.9 mg, 113 μmol, 91%) as a syrup. $[\alpha]_D^{22}$ +15.1 (c 1.1); ¹H NMR (500 MHz) δ 7.22 (d, 2H, J = 8.5 Hz, Ar-H), 6.84 (d, 2H, J = 9.0 Hz, Ar-H), 5.82–5.74 (m, 2H, CH₃CONH, CH₂CH=CH₂), 5.21-5.15 (m, 2H, H-1, CH₂CH=CH₂), 5.10 (dd, 1H, J = 1.5, 10.5 Hz, CH₂CH=CH₂), 4.89 (t, 1H, J = 9.5 Hz, H-4), 4.43 (s, 2H, Ar- CH_2), 4.17 (t, 1H, J = 9.5 Hz, H-3), 4.06-4.04 (m, 2H, CH₂CH=CH₂), 3.78 (s, 3H, OCH₃), 3.63-3.59 (m, 1H, H-5), 3.49-3.48 (m, 2H, H-6_a, H-6_b), 3.14-3.09 (m, 1H, H-2), 1.96 (s, 3H, CH₃COO), 1.94 (s, 3H, CH₃CONH), 1.64-1.58 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.86 (d, 3H, J = 2.0 Hz, $SiC(CH_3)_2CH(CH_3)_2$), 0.85 (d, 3H, J = 2.0 Hz, SiC(CH₃)₂CH(CH₃)₂), 0.83 (s, 3H, SiC(CH₃)₂- $CH(CH_3)_2$), 0.82 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$), 0.16 (s, 3H, $SiCH_3$), 0.12 (s, 3H, SiC H_3); ¹³C NMR (125 MHz) δ 170.5, 170.0, 159.4, 134.9, 130.4, 129.5, 116.9, 113.9, 94.6, 77.8, 73.3, 72.8, 72.1, 69.9, 60.2, 55.5, 34.3, 25.0, 23.8, 21.2, 20.3, 18.8, -1.6, -3.3. ESIMS m/z calcd for $C_{29}H_{47}NO_8SiNa$ [M + Na⁺]: 588.2969. Found: 588.2970.

1.6. Dimethylthexylsilyl 2-acetamido-6-*O*-acetyl-3-*O*-allyl-2-deoxy-4-*O*-(4-methoxybenzyl)-β-p-glucopyranoside (7)

Following a similar protocol for **6**, **5** (87.2 mg, 166 μmol) was allowed to react with Ac_2O (100 μL , 1.1 mmol) in pyridine (1 mL) to furnish **7** (78.0 mg, 138 μ mol, 83%) as a syrup. $[\alpha]_D^{22}$ +20.8 (c 1.1); ¹H NMR (500 MHz) δ 7.22 (d, 2H, J = 8.5 Hz, Ar-H), 6.85 (d, 2H, J = 8.5 Hz, Ar-H), 5.94–5.86 (m, 1H, CH₂CH=CH₂), 5.80–5.76 (m, 1H, CH_3CONH), 5.25 (dd, 1H, J = 1.5, 17.5 Hz, $CH_2CH = CH_2$), 5.14 (d, 1H, J = 10.5 Hz, CH₂CH=CH₂), 4.97 (d, 1H, J = 8.0 Hz, H-1), 4.73 (d, 1H, J = 10.5 Hz, Ar-C H_2), 4.48 (d, 1H, J = 10.5 Hz, ArC H_2), 4.30-4.25 (m, 2H, $CH_2CH=CH_2$, $H-6_a$), 4.17–4.10 (m, 2H, $CH_2CH=CH_2$, $H-6_b$), 3.95 (t, 1H, J = 9.5 Hz, H-3), 3.78 (s, 3H, OCH₃), 3.54–3.51 (m, 1H, H-5), 3.38 (t, 1H, I = 9.0 Hz, H-4), 3.31-3.26 (m, 1H, H-2),2.01 (s, 3 H, CH₃COO), 1.94 (s, 3H, CH₃CONH), 1.61-1.56 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.85 (d, 3H, I = 1.5 Hz, $SiC(CH_3)_2CH(CH_3)_2$), 0.83 (d, 3H, 1.0 Hz, $SiC(CH_3)_2CH(CH_3)_2$), 0.81 (s, 3H, $SiC(CH_3)_2$ - $CH(CH_3)_2$), 0.80 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$), 0.11 (s, 3H, $SiCH_3$), 0.10 (s, 3H, SiC H_3); ¹³C NMR (125 MHz) δ 171.0, 170.3, 159.6, 135.2, 130.1, 130.0, 117.1, 114.1, 95.0, 80.8, 78.2, 74.4, 73.7, 73.0, 63.6, 59.5, 55.5, 34.3, 25.0, 23.8, 21.0, 20.3, 20.2, 18.7, -1.7, -3.3.ESIMS m/z calcd for $C_{29}H_{47}NO_8SiNa$ [M + Na⁺]: 588.2969. Found: 588.2967.

1.7. Dimethylthexylsilyl 2-O-benzoyl-3,4,6-tri-O-benzyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (9)

A solution of **4** (253 mg, 483 μ mol) in CH₂Cl₂ (15 mL) was stirred for 2 h in the presence of 5 Å MS (820 mg) at ambient temperature under N₂ atmosphere after which TMSOTf (48 μ L, 265 μ mol) was added followed by a solution of **8**⁹ (605.8 mg, 867 mmol) in CH₂Cl₂ (8 mL) over 1.5 h. The mixture was stirred for another 2.5 h until TLC (EtOAc–hexane 2:3) showed that the reactant was completely consumed. The reaction mixture was diluted with CH₂Cl₂ and the solid was filtered off. The filtrate was washed with satd aq NaHCO₃ and brine. The collected organic phase was dried over Na₂SO₄ and concentrated. The resulting residue was purified by flash chromatography (EtOAc–hexane 2:5) on silica gel to afford disaccharide **9** (260.0 mg, 245 μ mol, 51%). [α]²¹ +13.1 (c 0.8); ¹H NMR (500 MHz) δ 7.97 (d, 2H, J = 7.5 Hz, Ar-H), 7.58 (t, 1H, J = 7.5 Hz, Ar-H), 7.46–7.57 (t, 2H, J = 8.0 Hz, Ar-H), 7.38–7.11 (m, 17H, Ar-H), 6.88 (d, 2H, J = 8.5 Hz, Ar-H), 5.88–5.82 (m, 2H,

 CH_3CONH , $CH_2CH=CH_2$), 5.24–5.18 (m, 2H, H"-2, $CH_2CH=CH_2$), 5.05 (d, 1H, I = 10.5 Hz, $CH_2CH = CH_2$), 4.81 (d, 1H, I = 10.5 Hz, $ArCH_2$), 4.76 (d, 1H, J = 6.5 Hz, H'-1), 4.74 (d, 1H, J = 11.5 Hz, $ArCH_2$), 4.66-4.52 (m, 6H, H"-1, ArCH₂), 4.31 (d, 1H, I = 11.5 Hz, ArCH₂), 4.28 (dd, 1H, J = 5.0, 13.0 Hz, $CH_2CH = CH_2$), 4.11 (dd, 1H, J = 5.5, 13.0 Hz, $CH_2CH=CH_2$) 3.96 (t, 1H, J = 7.0 Hz, H'-3), 3.83–3.69 (m, 8 H, OC H_3 , H'-4, H'-6_a, H'-6_b, H"-6_a, H"-6_b), 3.58-3.53 (m, 3H, H"-3, H"-4, H'-5), 3.46-3.42 (m, 1 H, H"-5), 3.41-3.38 (m, 1H, H'-2), 1.99 (s, 3H, CH₃CONH), 1.59–1.54 (m, 1H, SiC(CH₃)₂CH(CH₃)₂), 0.84 (d, 3H, J = 2.5 Hz, SiC(CH₃)₂CH(CH₃)₂), 0.82 (d, 3H, J = 2.5 Hz, SiC(CH₃)₂CH(CH₃)₂), 0.78 (s, 3H, SiC(CH₃)₂CH(CH₃)₂), 0.77 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$, 0.03 (s, 3H, $SiCH_3$), -0.02 (s, 3H, $SiCH_3$); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 165.6, 159.5, 138.4, 138.3, 138.1, 135.6, 133.5, 130.6, 130.0, 129.8, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.8, 116.5, 114.1, 99.9 ($C_{1''}$, $J_{C1''-H1''}$ = 163.4), 95.2 $(C_{1'}, J_{C1'-H1'} = 164.2)$, 83.1, 78.3, 78.2, 75.4, 75.2, 74.6, 74.4, 73.8, 73.3, 72.6, 68.9, 68.8, 56.5, 55.4, 34.2, 25.0, 23.7, 20.3, 18.8, -1.8,-3.4. ESIMS m/z calcd for $C_{61}H_{77}NO_{13}SiNa$ [M+Na⁺]: 1082.5062. Found: 1082.5066.

1.8. Dimethylthexylsilyl 3,4,6-tri-O-benzyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (10)

To a solution of **9** (160.0 mg, 151 μmol) in MeOH–THF (1:1, v:v, 6 mL) was added a solution of NaOMe in MeOH (25 wt %, 150 μL, 656 µmol). The resultant mixture was stirred for 18 h at ambient temperature under N₂ atmosphere. Monitoring by TLC (MeOH-CH₂Cl₂ 1:4) indicated that the reaction went to completion. The reaction mixture was neutralized with Amberlite IR-120 resin (H⁺), filtered, and the filtrate was concentrated. The residue was purified by flash chromatography on silica gel (EtOAc-CH2Cl2 1:5) to furnish alcohol **10** (110.5 mg, 116 μ mol, 77%). $[\alpha]_D^{21}$ +17.5 (c 1.3); 1 H NMR (500 MHz) δ 7.39–7.27 (m, 15H, Ar-H), 7.17 (d, 2H, J = 7.5 Hz, Ar-H), 6.87 (d, 2H, J = 9.0 Hz, Ar-H), 5.88-5.81 (m, 1H, $CH_2CH=CH_2$), 5.75 (d, 1H, J = 7.5 Hz, CH_3CONH), 5.19 (d, 1H, J = 12.5 Hz, $CH_2CH = CH_2$), 5.06 - 5.03 (m, 2H, $CH_2CH = CH_2$, H' - 1), 4.94 (d, 1H, J = 11.5 Hz, ArCH₂), 4.84-4.80 (m, 2H, ArCH₂), 4.62 (d, 1H, I = 12.0 Hz, ArCH₂), 4.58–4.47 (m, 5H, ArCH₂, H"-1), 4.45 (dd, 1H, J = 5.0, 12.5 Hz, $CH_2CH = CH_2$), 4.08-4.02 (m, 2H, $CH_2CH = CH_2$), H'-3), 3.96–3.91 (m, 2H, H'-4, H'-6_a), 3.76 (s, 3H, OCH₃), 3.70– 3.66 (m, 3H, H'-6_b, H"-6_a, H"-6_b), 3.63-3.59 (m, 2H, H"-4, OH), 3.52-3.45 (m, 3H, H"-2, H"-3, H'-5), 3.42-3.39 (m, 1H, H"-5), 3.25-3.20 (m, 1H, H'-2), 1.94 (s, 3H, CH₃CONH), 1.65-160 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.88 (d, 3H, J = 2.5 Hz, $SiC(CH_3)_2CH(CH_3)_2$), 0.87 (d, 3H, J = 2.5 Hz, SiC(CH₃)₂CH(CH₃)₂), 0.84 (s, 3H, SiC(CH₃)₂- $CH(CH_3)_2$), 0.83 (s, 3H, $SiC(CH_3)_2CH(CH_3)_2$), 0.16 (s, 3H, $SiCH_3$), 0.12 (s, 3H, SiC H_3); ¹³C NMR (125 MHz) δ 170.3, 159.5, 139.1, 138.5, 138.4, 135.7, 129.9, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8, 116.2, 114.0, 103.4 ($C_{1''}$, $J_{C1''-H1''}$ = 165.7), 95.0 ($C_{1'}$, $J_{C1'-H1'}$ = 164.1), 84.8, 79.5, 77.7, 76.1, 75.3, 75.2, 74.4, 73.7, 73.6, 73.3, 69.1, 68.9, 59.1, 55.4, 34.3, 25.0, 23.8, 20.3, 18.8, -1.6, -3.2.ESIMS m/z calcd for $C_{54}H_{73}NO_{12}SiNa$ [M + Na⁺]: 978.4800. Found: 978.4823.

1.9. Dimethylthexylsilyl 3,4,6-tri-O-benzyl- β -D-mannopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)- β -D-glucopyranoside (11)

To a solution of **10** (110.5 mg, 116 μ mol) in CH₂Cl₂ (6 mL) was added Dess–Martin periodinane (97 mg, 229 μ mol). The resulting mixture was stirred for 2 h at ambient temperature under N₂ temperature. Monitoring by TLC (EtOAc–hexane 1:1) showed the reaction went to completion. The mixture was diluted with CH₂Cl₂, washed with satd aq NaHCO₃ containing Na₂S₂O₃ and brine. The organic phase was dried over Na₂SO₄ and concentrated. The result-

ing residue was dissolved in MeOH–CH $_2$ Cl $_2$ (1:1, v:v, 6 mL). The solution was cooled to 0 °C, and NaBH $_4$ (58 mg, 1.5 mmol) was added. The resulting mixture was stirred for 12 h, while the temperature was elevated to the ambient. TLC (EtOAc–CH $_2$ Cl $_2$ 1:1) showed that the reaction went to completion. The reaction mixture was quenched with AcOH and concentrated. The residue was diluted with CH $_2$ Cl $_2$ and washed with brine. The organic phase was dried over Na $_2$ SO $_4$ and concentrated. The residue was applied to silica gel column (EtOAc–CH $_2$ Cl $_2$ 1:2) to afford **11** (92.3 mg, 97 µmol, 84%) and **10** (5.0 mg, 5.2 µmol, 4.5%).

Compound **11**: $[\alpha]_D^{21}$ +2.8 (*c* 1.0); ¹H NMR (500 MHz) δ 7.36–7.20 (m, 17H, Ar-H), 6.85 (d, 2H, J = 8.5 Hz, Ar-H), 5.94 (d, 1H, J = 8.0 Hz, CH_3CONH), 5.87-5.81 (m, 1H, $CH_2=CHCH_2$), 5.19 (d, 1H, J=12.5 Hz, CH_2 =CHCH₂), 5.05 (d, 1H, J = 10.0 Hz, CH_2 =CHCH₂), 5.02 (d, 1H, J = 6.5 Hz, H'-1), 4.86 (d, 1H, J = 11.0 Hz, ArCH₂), 4.67 (d, 1H, J = 12.0 Hz, ArCH₂), 4.61 (s, 1H, H"-1), 4.58-4.51 (m, 5H, ArCH₂), 4.43 (d, 1H, I = 11.5 Hz, ArCH₂), 4.28 (dd, 1H, I = 5.5, 12.5 Hz, $CH_2 = CHCH_2$), 4.10 (dd, 1H, I = 6.0, 12.5 Hz, $CH_2 = CHCH_2$), 4.03 (d, 1H, J = 3.0 Hz, H"-2), 3.99 (t, 1H, J = 8.0 Hz, H'-3), 3.93 (t, 1H, I = 8.0 Hz, H'-4), 3.87 (t, 1H, I = 9.5 Hz, H"-4), 3.77-3.69 (m, 7H, OCH_3 , $H'-6_a$, $H'-6_b$, $H''-6_a$, $H''-6_b$), 3.60-3.57 (m, 1H, H'-5), 3.47-3.42 (m, 2H, H'-2, H"-3), 3.36-3.33 (m, 1H, H"-5), 2.60 (br s, 1H, OH), 1.94 (s, 3H, CH_3 CONH), 1.66–1.60 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.87 (d, 3H, I = 2.5 Hz, SiC(CH₃)₂CH(CH₃)₂), 0.86 (d, 3H, I = 2.5 Hz, $SiC(CH_3)_2CH(CH_3)_2$), 0.84 (s, 6H, $SiC(CH_3)_2CH(CH_3)_2$), 0.15 (s, 3H, $SiCH_3$), 0.13 (s, 3H, $SiCH_3$); ¹³C NMR (125 MHz) δ 170.2, 159.4, 138.5, 138.4, 135.6, 130.4, 129.6, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 127.7, 116.6, 114.1, 100.0 ($C_{1''}$, $J_{C1''-H1''}$ = 160.6), 95.0 $(C_{1'}, J_{C1'-H1'} = 165.0)$, 81.9, 78.6, 76.0, 75.6, 75.4, 74.7, 74.3, 73.7, 73.4, 73.0, 71.6, 69.4, 68.1, 57.8, 55.4, 34.3, 25.0, 23.8, 20.3, 18.8, -1.7, -3.2. ESIMS m/z calcd for $C_{54}H_{73}NO_{12}SiNa$ [M + Na^{+}]: 978.4800. Found: 978.4818.

1.10. Dimethylthexylsilyl 2-*O*-(benzylsulfonyl)-3,4,6-tri-*O*-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-2-acetamido-3-*O*-allyl-*O*-2-deoxy-6-*O*-(4-methoxybenzyl)- β -D-glucopyranoside (12)

To a solution of 11 (89.0 mg, 93 µmol) in pyridine (2 mL) was added benzylsulfonyl chloride (31.0 mg, 162 μmol) at 0 °C under N₂ atmosphere. After stirring 7 h, TLC (EtOAc-hexane 1:1) showed that the reaction went to completion. The reaction mixture was diluted with CH₂Cl₂, washed with 0.1 N HCl, satd aq NaHCO₃, and brine. The combined organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (EtOAc-hexane 2:3) to afford sulfonate 12 (100 mg, 90 μ mol, 97%) as a syrup. [α]²² -43.6 (c 0.8); ¹H NMR (500 MHz) δ 7.42–7.26 (m, 22H, Ar-H), 6.85 (d, 2H, J = 9.0 Hz, Ar-H), 5.93 (d, 1H, J = 8.5 Hz, CH_3CONH), 5.84–5.78 (m, 1H, $CH_2 = CHCH_2$), 5.17 (d, 1H, J = 17.0 Hz, $CH_2 = CHCH_2$), 5.11 (d, 1H, J = 2.0 Hz, H''-2), 5.03 (d, 1H, J = 10.5 Hz, $CH_2 = CHCH_2$), 4.93 (d, 1H, J = 7.5 Hz, H'-1), 4.90 (d, 1H, J = 10.5 Hz, ArCH₂), 4.76 (d, 1H, J = 11.0 Hz, ArCH₂), 4.63-4.49 (m, 6H, ArCH₂, H"-1), 4.43 (d, 1H, J = 12.0 Hz, ArCH₂), 4.38 (s, 2H, ArC H_2SO_2), 4.22 (dd, 1H, J = 5.0, 13.0 Hz, CH₂= $CHCH_2$), 4.13 (dd, 1H, J = 5.5, 13.0 Hz, $CH_2 = CHCH_2$), 3.97 (t, 1H, J = 6.0 Hz, H'-3), 3.81–3.65 (m, 11H, OC H_3 , H'-2, H'-4, H'-5, $H'-6_a$, $H'-6_b$, $H''-6_b$ 4, H"-6_a, H"-6_b), 3.53-3.50 (dd, 1H, J = 3.0, 9.5 Hz, H"-3), 3.34-3.32 (m, 1H, H"-5) 1.80 (s, 3H, CH₃CONH), 1.64-1.60 (m, 1H, $SiC(CH_3)_2CH(CH_3)_2$), 0.88-0.84 (m, 12H, $SiC(CH_3)_2CH(CH_3)_2$), 0.15 (s, 3H, SiCH₃), 0.14 (s, 3H, SiCH₃); 13 C NMR (125 MHz) δ 170.1, 159.5, 138.5, 138.3, 137.4, 135.7, 131.1, 130.5, 129.7, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 116.4, 114.1, 98.3 ($C_{1''}$, $J_{C1''-H1''}$ = 160.4), 95.3 ($C_{1'}$, $I_{\text{C1'-H1'}} = 163.4$), 80.3, 79.0, 77.8, 75.9, 75.6, 75.5, 74.3, 73.8, 73.4, 72.8, 72.1, 69.8, 69.1, 57.9, 56.6, 55.4, 34.3, 25.0, 23.4, 20.3, 18.8, -1.7, -3.2. ESIMS m/z calcd for $C_{61}H_{79}NO_{14}SiNa$ [M+Na⁺]: 1132.4888. Found: 1132.4905.

Acknowledgment

We thank the NIH (GM62160) for support of this work.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2008.10.007.

References

 Abdel-Rahman, A. A.-H.; Jonke, S.; El Ashry, E. S. H.; Schmidt, R. R. Angew. Chem., Int. Ed. 2002, 41, 2972–2974.

- Abdel-Rahman, A. A.-H.; Jonke, S.; El Ashry, E. S. H.; Schmidt, R. R. Angew. Chem., Int. Ed. 2004, 43, 4389.
- 3. Abdel-Rahman, A. A.-H.; Jonke, S.; El Ashry, E. S. H.; Schmidt, R. R. Angew. Chem., Int. Ed. 2008, 47, 5277.
- 4. Bernardi, A.; Arosio, D.; Manzoni, L.; Monti, D.; Posteri, H.; Potenza, D.; Mari, S.; Jiménez-Barbero, J. Org. Biomol. Chem. 2003, 785–792.
- Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371– 2374.
- 6. Pozsgay, V.; Brisson, J.-R.; Jennings, H. J. Carbohydr. Res. 1990, 205, 133-146.
- Ekborg, G.; Lindberg, B.; Lonngren, J. Acta Chem. Scand. B 1972, 26, 3287–3292.
- 8. Shaban, M. A. E.; Jeanloz, R. W. Carbohydr. Res. 1976, 52, 115–127.
- 9. Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Bando, T.; Hughes, R.; Winssinger, N.; Natarajan, S.; Koumbis, A. E. *Chem. Eur. J.* **1999**, *5*, 2648–2667.
- 10. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-123.
- 11. Dess, P. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.